A Permutation-Translation Simulated Annealing Algorithm for L1 and L2 Unidimensional Scaling
نویسندگان
چکیده
Given a set of objects and a symmetric matrix of dissimilarities between them, Unidimensional Scaling is the problem of finding a representation by locating points on a continuum. Approximating dissimilarities by the absolute value of the difference between coordinates on a line constitutes a serious computational problem. This paper presents an algorithm that implements Simulated Annealing in a new way, via a strategy based on a weighted alternating process that uses permutations and point-wise translations to locate the optimal configuration. Explicit implementation details are given for least squares loss functions and for least absolute deviations. The weighted, alternating process is shown to outperform earlier implementations of Simulated Annealing and other optimization strategies for Unidimensional Scaling in run time efficiency, in solution quality, or in both.
منابع مشابه
A cloud-based simulated annealing algorithm for order acceptance problem with weighted tardiness penalties in permutation flow shop scheduling
Make-to-order is a production strategy in which manufacturing starts only after a customer's order is received; in other words, it is a pull-type supply chain operation since manufacturing is carried out as soon as the demand is confirmed. This paper studies the order acceptance problem with weighted tardiness penalties in permutation flow shop scheduling with MTO production strategy, the objec...
متن کاملComputing Sparse Representation in a Highly Coherent Dictionary Based on Difference of L1 and L2
We study analytical and numerical properties of the L1−L2 minimization problem for sparse representation of a signal over a highly coherent dictionary. Though the L1 −L2 metric is non-convex, it is Lipschitz continuous. The difference of convex algorithm (DCA) is readily applicable for computing the sparse representation coefficients. The L1 minimization appears as an initialization step of DCA...
متن کاملMultidimensional Scaling in the City-Block Metric: L1 and L2-Norm Optimization Methods Using MATLAB
In a recent paper by Hubert, Arabie, and Meulman (2002), a comparison is made among several different optimization strategies for the linear unidimensional scaling (LUS) task in the L2-norm, with all implementations carried out within a MATLAB computational environment. The central LUS task involves arranging the n objects in a set S = {O1, O2, . . . , On} along a single dimension, defined by c...
متن کاملMinimization of ℓ1-2 for Compressed Sensing
We study minimization of the difference of l1 and l2 norms as a non-convex and Lipschitz continuous metric for solving constrained and unconstrained compressed sensing problems. We establish exact (stable) sparse recovery results under a restricted isometry property (RIP) condition for the constrained problem, and a full-rank theorem of the sensing matrix restricted to the support of the sparse...
متن کاملEstimation of Software Reliability by Sequential Testing with Simulated Annealing of Mean Field Approximation
Various problems of combinatorial optimization and permutation can be solved with neural network optimization. The problem of estimating the software reliability can be solved with the optimization of failed components to its minimum value. Various solutions of the problem of estimating the software reliability have been given. These solutions are exact and heuristic, but all the exact approach...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Classification
دوره 22 شماره
صفحات -
تاریخ انتشار 2005